If you found this article, there is a good chance that you are trying to find out how to read a thermocouple reference table (also called thermocouple chart). Good news: you are in the right place. If you’re wondering what a thermocouple is and how it works, check out this article.

Thermocouple reference tables tell you the material properties of a certain pressure or temperature. A thermocouple chart works the same way. And don’t worry. Thermocouple tables are way easier to read than many other thermodynamic tables!

In this article, we’ll show you how to read a thermocouple table for temperature with a multimeter. For that, we’ll use two examples, one with a type K thermocouple table and the other on a type T thermocouple chart.

B+B Thermo-Technik GmbH
Magnetic Thermocuple sensor- type K Thermocouple sensor for measuring high temperatures on ferromagnetic or metallic surfaces
in the shop from 112 €
0600 1061

Thermocouples and compensation

You have a few concepts you should know before you pull your thermocouple voltage with your multimeter and check the voltage to temperature conversion table. When you scale out a thermocouple, you’ll always see the junction as zero degrees Celsius (0° C). So what does that mean? That means you don’t have extra voltage because 0° C equals zero millivolts (0 mV), right? Nope.

In reality, you usually have a higher temp in the cold junction. Therefore, if you don’t compensate for that, then you’ll get the wrong value.

Thermocouple
Thermocouple – Courtesy of hotkilns.com

Okay, some of you just thought, “I don’t have a cold junction. I can just go in with my voltmeter and check the voltage directly!” Nope again. When you connect the voltmeter, you create a cold junction! You need to read up on the law of intermediate metals, also known as the law of thermocouple.

How to read a thermocouple reference table

Okay, down to the nitty-gritty. In case you missed it earlier, you need a voltmeter or a multimeter to check the thermocouple voltage. Next, you need to know what type of thermocouple you have. And last but not least, you need to check the thermocouple table that matches your thermocouple.

Okay, but what does a reference table look like?

Type K thermocouple table

To start things off, let’s check out this type K thermocouple table.

type k thermocouple table
Type K thermocouple reference table

The first column on the left (in red) shows temperatures in increments of 10. Okay, so if you have 14, then where do you find 14 on the table? Easy. Start by finding 10 on the left. Then slide right to find the column with 4 above it (row in blue). Yup, that gives you 14. It works the same for 105, 66, 92, and so on.

The numbers in the yellow box are the millivoltages. If you know the millivoltage, then find it in the table and follow the column and row to find your temperature.

Let me give you an easy example based on this type K thermocouple table. So say you have 3.474 mV. Now scan the table, and you’ll find that number in the row of 80 and the column of 5. That makes 85° C. Tada!

Cold junction compensation

Say you have an ambient temperature of 24° C, and you check a type K thermocouple with your voltmeter. How do you find your temperature?

First, remember the cold junction. The 24° C applies here. If you check the thermocouple reference table, then you’ll see the value for 24° C0.960 mV. Now that you have these numbers, do some simple math.

So let’s say the voltmeter gave you 4.409 mV. Just add that number to the value you found for the ambient temperature, and you should get 5.369 mV.

Next, look at the table, and you’ll see that value equals 131° C. Simple, right? Now let’s move on to the example with the type T thermocouple chart.

Type T Thermocouple Table

No secrets here. The procedure to read the type T thermocouple table is exactly the same as the one from the type K thermocouple table. We’ll make this example a bit more complex though.

Suppose you measure the temperature of a process in a nice controlled room temp of 18° C. Since you know the ambient temp, go to your type T thermocouple chart and look for the temperature to millivolt conversion.

Thermocouple-Reference-Table-Type-T
Courtesy of Omega

Column 8 and row 10 will give you 18’s value, 0.709 mV. So far so good, right? Now you get a thermocouple voltage of 2.759 mV from 0° C, so do the reference junction compensation: 2.759 + 0.709 = 3.468 mV. Basic math. Then with this result, you have one more step to go. So look on the table for the temperature value which matches 3.468 mV.

But then you see that the table doesn’t have 3.468! Because our voltage falls between 82 and 83° C, we’ll need to interpolate the value from the table. So how do we do it?

To save some time, instead of explaining it step-by-step, I’ll show you the final formula.

Interpolation-Formula-Thermocouple-Table.
Courtesy of GlobalSpec
  • Tm = temperature measured (°C)
  • Vm = thermocouple voltage measured
  • Tl = lower temperature on the thermocouple reference table
  • Th = higher temperature on the thermocouple reference table
  • Vl = voltage referent to Tl
  • Vh = voltage referent to Th

With this formula, you just throw your numbers in. Here we have Tl at 82 and Th at 83. Then we have 3.448 and 3.494 as their respective temp-to-voltage conversions. Vm comes from our measurement plus the cold junction compensation, 3.468.

My calc app says Tm = 82.43° C. Anyone else get a different answer.

More content on temperature measurement

Temperature sensors you should know

Temperature sensors are necessary for a variety of processes and segments. In most cases, you need to monitor exact temperatures, and in some, you need precise control. If you want to know more, read out definitive guide to temperature sensor types and applications.

7 wireless temperature transmitters you must know

Temperature measurement gives you huge opportunities to use wireless communication. Most devices already have good battery life and fast update rates, allowing you to add a wireless transmitter with very little hassle. Read more

Multipoint temperature assemblies

Refineries use catalytic reactions to get the desired quality and remove contaminants. The reactors can be up to 40 meters tall and must work nonstop 365 days a year for anywhere from 6 to 12 years. This demanding task calls for special assemblies. Read more

Top 5 temperature transmitters on the market

Looking at prime solutions for your daily process here. The selections on this list provide a bit more than those transmitters that look like cookies, you know? These have cool displays, more than one input, fancy features, and enough oomph to work in hazardous areas. Read more

If you’re still craving information about how to read thermocouple tables, get in touch with our engineers!

Recommended articles

How does iTHERM TrustSens save calibration time?

Calibration Food & Beverage Temperature Wireless